Abstract

Using the theory of Properly Embedded Graphs developed in an earlier work we define an involutory duality on the set of labeled non-crossing trees that lifts the obvious duality in the set of unlabeled non-crossing trees. The set of non-crossing trees is a free ternary magma with one generator and this duality is an instance of a duality that is defined in any such magma. Any two free ternary magmas with one generator are isomorphic via a unique isomorphism that we call the structural bijection. Besides the set of non-crossing trees we also consider as free ternary magmas with one generator the set of ternary trees, the set of quadrangular dissections, and the set of flagged Perfectly Chain Decomposed Ditrees, and we give topological and/or combinatorial interpretations of the structural bijections between them. In particular the bijection from the set of quadrangular dissections to the set of non-crossing trees seems to be new. Further we give explicit formulas for the number of self-dual labeled and unlabeled non-crossing trees and the set of quadrangular dissections up to rotations and up to rotations and reflections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.