Abstract

Non-covalent interactions of N-(4-carboxyphenyl)phthalimide (CPP) with carbon nanotubes (CNTs) have been investigated to see the effects of interactions on the properties of CPP, which is a medicinal compound. Two models of (3,3) armchair and (6,0) zigzag CNTs have been considered in this work. All structures have been optimized by density functional theory (DFT) calculations to evaluate the corresponding properties. Moreover, quadrupole coupling constants (CQ) have been evaluated at the atomic scale for the optimized structures. The results yielded stabilized CPP@CNT hybrids by effects of hybridization on the properties of both of CPP and CNT counterparts. The CQ parameters also indicate that the carbon atoms are very much important to detect the type of CNT whereas other atoms showed almost the same effects at the same situations. As a result, the CPP could be very well hybridized with the CNT through non-covalent interacting system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.