Abstract

The design of molecules with non-trivial topologies is an essential step in the development of methods to mimic biological transformation in artificial systems. However, the generation of supramolecular topologies of increasing complexity, such as [n]catenanes, rotaxanes, knots and links, is relatively rare and challenging. Primarily, selective and quantitative synthesis of supramolecular topologies is a formidable challenge. Template-free, non-covalent interaction-directed coordination-driven self-assembly provides an alternative approach for constructing non-trivial topologies in selective and quantitative manner. This review briefly summarizes and provides a comprehensive insight into non-trivial topologies obtained via template-free, coordination and non-covalent interaction-driven self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.