Abstract

Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism. The thermodynamic parameters demonstrated that the interaction is influenced by hydrogen bonding and weak van der Waals forces. CD and FT-IR results revealed no conformational changes in ct-DNA and t-RNA structure on binding with esculetin. Furthermore, competitive displacement assay with ethidium bromide, melting temperature, viscosity measurement, and potassium iodide quenching experiments, reflected that esculetin probably binds to the minor groove of ct-DNA. The molecular docking results provided further confirmation for the spectroscopic findings, including the binding location of esculetin and binding energies of esculetin complexes with ct-DNA and t-RNA. Molecular dynamics simulation studies demonstrated the conformational stability and flexibility of nucleic acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call