Abstract

The interaction of phthalic acid esters (PAEs) with DNA is known to be responsible for the disruption of endocrine functions and the teratogenic and carcinogenic effects. However, the binding strength and mechanism of this important process has often been neglected. Here, we confirmed the binding interaction between PAEs and DNA via fluorescence titration quenching experiment. The linear fitting curve proved that PAEs could bind to DNA, and the binding constants (KA) were 4.11×105, 1.04×105, 7.60×104, 1.99×104, and 1.42×103 L/mol for diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and benzyl butyl phthalate (BBP), respectively. DNA melting point, UV-vis spectra and Fourier transform infrared spectroscopy (FTIR) analyses revealed that PAEs interact predominantly with thymines in the DNA minor groove. Quantum chemical calculations showed that hydrogen bonding and van der Waals force formation between PAEs and DNA bases dominated the binding interaction. However, PAEs-DNA binding did not induce any DNA conformation change since the circular dichroism and FTIR spectra of B-DNA were not change. The electrostatic surface potential (ESP) might act an important role in PAEs-DNA binding interaction. This work will broaden our understanding of the interaction between PAEs and genetic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.