Abstract
The mechanical properties of two-phase γ-TiAl alloys depend strongly on the scale of their lamellar microstructures. In this study, we investigate the effect of alloy composition on lamellar thickness in Ti100-xAlx by simulating microstructural evolution during the α2′ → α2 + γ phase transformation using the phase field method. From both existing experimental data and our simulation results we find that the average thickness of γ lamellae first decreases and then increases with increasing Al content. Further analyses reveal that this unique composition-dependence of the lamellar thickness could be associated with non-conventional pseudospinodal decomposition and congruent structural transformation mechanisms that generate ultra-high densities of nuclei at the initial stage, which impacts the later growth processes. The interplay between the number density of nuclei and the number of coalescence events during growth results in the non-monotonic dependence of the lamellar thickness on the alloy composition. These findings may offer new insights on the design of ultrafine lamellar microstructures for γ-TiAl alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.