Abstract
Oxygen saturation (SPO2) is an important indicator of health, and is usually measured by placing a pulse oximeter in contact with a finger or earlobe. However, this method has a problem in that the skin and the sensor must be in contact, and an additional light source is required. To solve these problems, we propose a non-contact oxygen saturation measurement technique that uses a single RGB camera in an ambient light environment. Utilizing the fact that oxygenated and deoxygenated hemoglobin have opposite absorption coefficients at green and red wavelengths, the color space of photoplethysmographic (PPG) signals recorded from the faces of study participants were converted to the YCgCr color space. Substituting the peaks and valleys extracted from the converted Cg and Cr PPG signals into the Beer–Lambert law yields the SPO2 via a linear equation. When the non-contact SPO2 measurement value was evaluated based on the reference SPO2 measured with a pulse oximeter, the mean absolute error was 0.537, the root mean square error was 0.692, the Pearson correlation coefficient was 0.86, the cosine similarity was 0.99, and the intraclass correlation coefficient was 0.922. These results confirm the feasibility of non-contact SPO2 measurements.
Highlights
Blood oxygen saturation (SPO2 ) refers to the concentration of oxygenated hemoglobin relative to the total amount of hemoglobin in the blood
We proposed a method to measure oxygen saturation in a non-contact manner by extracting a remote PPG signal
The method using the Cb and Cr signal does not utilize the characteristic that the absorption coefficients of non-oxygenated hemoglobin and oxygenated hemoglobin are opposite at different wavelengths, so the results are not good
Summary
Blood oxygen saturation (SPO2 ) refers to the concentration of oxygenated hemoglobin relative to the total amount of hemoglobin in the blood. The current standard for SPO2 measurement is pulse oximetry using the photoplethysmographic (PPG) method, which measures changes in blood volume through the amount of light transmitted or reflected after irradiating the skin with light. Using this measurement method and the fact that oxygenated hemoglobin and deoxygenated hemoglobin absorb red and infrared light differently, the sensor is contacted with the patient’s body, typically the finger or ear lobe [3]. In this study, we propose a non-contact method for measuring SPO2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.