Abstract
With the advent of MEMS, modal analysis of small structures is increasingly important. However, conventional excitation techniques normally require contact, which may not be feasible for small objects. We present a non-contact method that uses interference of ultrasound frequencies in air to produce low-frequency excitation of structures. Objects studied included hard-drive HGA suspensions and MEMS devices. The vibration induced by the ultrasound radiation force was varied in a wide range from 0 Hz to 50 kHz. Object motion was detected using a laser vibrometer; measured frequencies agreed with expected values. Also demonstrated was the unique capability to selectively enhance or suppress modes independently. For example, the ratio of the vibrational amplitudes of the 175 Hz first-bending and 1.33 kHz torsional modes of a small cantilever could be changed from in excess of 10:1 to less than 1:10 by shifting the ultrasound modulation phase 90 degrees. Similar changes were obtained for a 3 mm square MEMS mirror in the ratios of vibration amplitude around its two separate axes. Torsional modes of a hard-drive suspension could be selectively enhanced by over a factor of two by moving the ultrasound focus point from near the center to near the edge of the suspension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.