Abstract

Leaf wetness duration is a crucial factor in plant disease management. Current optical methods use standard RGB images to classify leaf wetness as a binary problem, i.e., wet or dry. Green leaves absorb red light, whereas water reflects it. Based on this difference, an experimental platform was built to semi-automatically measure droplet deposition on grape leaves while capturing red laser images using an RGB camera. The setup measured changes in leaf mass and area of scanned leaves to determine the water mass per leaf area as a measure of leaf wetness. A sprayer was used to apply water droplets to the leaves. As the amount of deposited water increased, the mean red channel intensity decreased, with more bright spots in the images. These bright spots were more distinguishable as droplets in the green channel. Segmented leaf area, mean red channel intensity, and the number of identified droplets were used as image features. A generalised additive model was employed to predict the leaf wetness value with extracted features. The R-squared value for the prediction of the validation dataset was 0.71. Image resolution and leaf orientation were identified as factors that influenced the model accuracy. The measurement method introduced in this study shows potential for accurately quantifying leaf wetness, and implies that in practice detecting leaf wetness can be integrated into a multi-classification problem, thereby broadening the potential applications of optical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.