Abstract

We describe how contactless high-frequency ultrasound microbeam stimulation (HFUMS) is capable of eliciting cytoplasmic calcium (Ca2+) elevation in human umbilical vein endothelial cells. The cellular mechanotransduction process, which includes cell sensing and adaptation to the mechanical micro-environment, has been studied extensively in recent years. A variety of tools for mechanical stimulation have been developed to produce cellular responses. We developed a novel tool, a highly focused ultrasound microbeam, for non-contact cell stimulation at a microscale. This tool, at 200 MHz, was applied to human umbilical vein endothelial cells to investigate its potential to elicit an elevation in cytoplasmic Ca2+ levels. It was found that the response was dose dependent, and moreover, extracellular Ca2+ and cytoplasmic Ca2+ stores were involved in the Ca2+ elevation. These results suggest that high-frequency ultrasound microbeam stimulation is potentially a novel non-contact tool for studying cellular mechanotransduction if the acoustic pressures at such high frequencies can be quantified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call