Abstract

To address the challenge of suppressing extremely-low frequency vibration and noise in precision instruments and equipment, a novel non-contact metamaterial beams is proposed in this paper. The resonators of the metamaterial beams integrate negative stiffness mechanism and electromagnetic damping tuning system. Based on the magnetic dipole theory and the electromagnetic induction law, the mechanical model of magnetic resonator is established. The band structure and transmission spectrum of the metamaterial beams are obtained by transfer matrix method. Besides, the results of numerical simulations are used to verify the accuracy of theoretical results. The result shows that the negative stiffness can be controlled by nonlinear magnetic force among the magnets. Based on this mechanism, the bandgap frequency can be reduced to a minimum of 50Hz. Then, the method of combining electromagnetic damping and negative impedance circuit is proposed to form a tuning system which can reduce the initial frequency of the bandgap to 4Hz. Interestingly, the proposed bandgap control mechanism achieves the extremely-low bandgap while broadens the bandwidth relatively, which overcomes the deficiency of traditional quasi-zero-stiffness metamaterials that reduce the bandgap frequency while causing the bandwidth to narrow. This study is expected to provide valuable ideas for the application of metamaterials in the field of low-frequency vibration and noise reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call