Abstract

The performance of carbon fiber reinforced polymer (CFRP) composites is significantly affected by the presence of subsurface defects, which originate from manufacturing processes or during operations. Although many non-destructive testing (NDT) methods have been employed to inspect CFRP materials and structures, the existing techniques are often time-consuming and sometimes require contact measurement. This paper presents a non-contact and rapid inspection method utilizing laser-excited acoustic shearography to detect subsurface defects in CFRP composites. In this method, a pulsed nanosecond laser is used to generate ultrasonic waves through thermoacoustic effect, and a shearography sensor is used to image the full-field wave-defect interactions. It is found that the proposed method can efficiently image various subsurface defect sizes in a non-contact way. The identified defects were validated through comparison with X-ray computed tomography (XCT).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.