Abstract
This paper proposes an effective computational tool for brittle crack propagation problems based on a combination of a higher-order phase-field model and a non-conforming mesh using a NURBS-based isogeometric approach. This combination, as demonstrated in this paper, is of great benefit in reducing the computational cost of using a local refinement mesh and a higher-order phase-field, which needs higher derivatives of basis functions. Compared with other approaches using a local refinement mesh, the Virtual Uncommon-Knot-Inserted Master-Slave (VUKIMS) method presented here is not only simple to implement but can also reduce the variable numbers. VUKIMS is an outstanding choice in order to establish a local refinement mesh, i.e. a non-conforming mesh, in a multi-patch problem. A phase-field model is an efficient approach for various complicated crack patterns, including those with or without an initial crack path, curved cracks, crack coalescence, and crack propagation through holes. The paper demonstrates that cubic NURBS elements are ideal for balancing the computational cost and the accuracy because they can produce accurate solutions by utilising a lower degree of freedom number than an extremely fine mesh of first-order B-spline elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.