Abstract
Doubly Special Relativity (DSR) theory is a recently proposed theory with two observer-independent scales (of velocity and mass), which is to describe a kinematic structure underlining the theory of Quantum Gravity. We observe that there are infinitely many DSR constructions of the energy–momentum sector, each of whose can be promoted to the κ-Poincaré quantum (Hopf) algebra. Then we use the co-product of this algebra and the Heisenberg double construction of κ-deformed phase space in order to derive the non-commutative space–time structure and the description of the whole of DSR phase space. Next we show that contrary to the ambiguous structure of the energy momentum sector, the space–time of the DSR theory is unique and related to the theory with non-commutative space–time proposed long ago by Snyder. This theory provides non-commutative version of Minkowski space–time enjoying ordinary Lorentz symmetry. It turns out that when one builds a natural phase space on this space–time, its intrinsic length parameter ℓ becomes observer-independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.