Abstract
The paper is discussing infinite divisibility in the setting of operator-valued boolean, free and, more general, c-free independences. Particularly, using Hilbert bimodule and non-commutative function techniques, we obtain analogues of the Lévy–Hinčin integral representation for infinitely divisible real measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.