Abstract

Within the phenomenological Ginzburg–Landau theory we investigate the effect of a composite antidot lattice and small dc applied current to the stability of commensurate and non commensurate vortex structures in perforated type-II superconducting samples in the weak pinning regime. We found that a composite antidot lattice, consisting of small and big antidots in the unit cell, considerably increases the probability to find square pinned vortex lattice as compared to a sample with a regular square array of antidots. An applied current also favors the square pinned vortex states. These results indicate that both the applied current and a composite pinning array distort the broad local minimum in the free energy which keeps the vortices away from the pinning centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call