Abstract
Mn_{3}Ir/CoFe bilayer is a prototypical exchange-coupled antiferromagnet (AF)–ferromagnet (FM) system. Nevertheless, a strong exchange coupling between FM and rare-earth(RE) interfaces of Fe/Dy and Fe/Tb has been established earlier. Strong coupling at the FM–RE interface originates from the number of irreversible spins owing to the imbalance in the non-collinear configuration in RE. However, exchange coupling between AF–RE could not be established due to the minimal number of irreversible spins in AF and RE. A frustrated inter-domain magnetic interaction leads to the coexistence of spin-freezing-like ordering around the temperature range of helical spin modulation at the exchange-coupled interfaces of RE-based specimens. To overcome the lack of coupling between the AF–RE interface, we use a sandwich structure of AF–FM–RE layers (Mn_{3}Ir/CoFe/Dy) as we demonstrate establishing considerable exchange bias in the system. Changing the bias direction during field cooling introduces possible differences in non-collinear directions (helicities), which affects the number of irreversible spins and consequent exchange coupling differently for opposite directions. The non-collinear structures in RE are topologically stable; thus, their directions of orientation can be regarded as an additional degree of freedom, which can be manipulated in all-spin-based technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.