Abstract
A massive single-input multiple-output (SIMO) system with a single transmit antenna and a large number of receive antennas in intersymbol interference (ISI) channels is considered. Contrast to existing energy detection (ED)-based non-coherent receiver where conventional pulse amplitude modulation (PAM) is employed, we propose a constellation design which minimizes the symbol-error rate (SER) with the knowledge of channel statistics. To make a comparison, we derive the SERs of the ED-based receiver with both the proposed constellation and PAM, namely $P_{e\_opt}$ and $P_{e\_pam}$. Specifically, asymptotic behaviors of the SER in regimes of a large number of receive antennas and high signal-to-noise ratio (SNR) are investigated. Analytical results demonstrate that the logarithms of both $P_{e\_opt}$ and $P_{e\_pam}$ decrease approximately linearly with the number of receive antennas, while $P_{e\_opt}$ degrades faster. It is also shown that the proposed design is of less cost, because compared with PAM, less antennas are required to achieve the same error rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.