Abstract

Simple SummaryDiarrhea and vomiting caused by Escherichia coli (E. coli) F17 are considered significant threats to animal farming. In the present study, RNA-Seq was performed to investigate the potential circRNA and miRNA biomarkers for E. coli F17-antagonism (AN) and -sensitive (SE) lambs. The results indicated that circRNA and miRNA expression is closely associated with the susceptibility of E. coli F17 in lambs. Numbers of circRNAs and miRNAs may serve as potential biomarkers for intestinal inflammatory response against E. coli F17 infection. Our study can provide a preliminary understanding of the underlying mechanisms of intestinal immunity.It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity.

Highlights

  • Diarrhea is the most commonly reported disease associated with infection by a complex mixture of bacteria in young animals

  • Pathogenic E. coli have been divided into five pathotypes based on the virulence properties and clinical signs of the host: enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), and diffusely enteroadherent E. coli (DAEC) [2]

  • We studied the transcriptomic characteristics of lamb spleen in response to E. coli F17 infection and revealed numbers of differentially expressed (DE) mRNAs, circRNAs, and lncRNAs [30,52]

Read more

Summary

Introduction

Diarrhea is the most commonly reported disease associated with infection by a complex mixture of bacteria in young animals. Pathogenic E. coli have been divided into five pathotypes based on the virulence properties and clinical signs of the host: enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), and diffusely enteroadherent E. coli (DAEC) [2]. Among these pathotypes, ETEC has been identified as the major agent of E. coli-related diarrhea [3,4,5,6]. E. coli F17, one of the main subtypes of ETEC, has been reported as the major pathogen associated with ETEC-related diarrhea worldwide, responsible for high morbidity and mortality [13,14,15]. The growing prevalence of E. coli F17 has renewed the sense of urgency for E. coli F17 research

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call