Abstract

BackgroundBovine milk contains extracellular vesicles (EVs) that play a role in cellular communication, acting in either an autocrine, paracrine, or an exocrine manner. The unique properties of the EVs protect the cargo against degradation. We profiled the ncRNAs (non-coding RNA) present in the EVs from seven dairy products - raw whole milk, heat-treated skim milk, homogenized heat-treated skim milk, pasteurized homogenized skim milk, pasteurized heavy whipping cream, sweet cream buttermilk and cultured buttermilk with four replicates each, obtained at different processing steps from a commercial dairy plant. EVs and their cargo were extracted by using a validated commercial kit that has been shown to be efficient and specific for EVs. Further, to find the annotation of ncRNAs, we probed bovine and other organism repositories(such as miRBase, miRTarBase, Ensemble) to find homolog ncRNA annotation in case the annotations of ncRNA are not available in Bos Taurus database.ResultsSpecifically, 30 microRNAs (miRNAs), were isolated throughout all the seven milk samples, which later when annotated with their corresponding 1546 putative gene targets have functions associated with immune response and growth and development. This indicates the potential for these ncRNAs to beneficially support mammary health and growth for the cow as well as neonatal gut maturation. The most abundant miRNAs were bta-miR-125a and human homolog miR-718 based on the abundance values of read count obtained from the milk samples.bta-miR-125a is involved in host bacterial and viral immune response, and human homolog miR-718 is involved in the regulation of p53, VEGF, and IGF signaling pathways, respectively.Sixty-two miRNAs were up-regulated and 121 miRNAs were down-regulated throughout all the milk samples when compared to raw whole milk. In addition, our study explored the putative roles of other ncRNAs which included 88 piRNAs (piwi-interacting RNA), 64 antisense RNAs, and 105 lincRNAs (long-intergenic ncRNAs) contained in the bovine exosomes.ConclusionTogether, the results indicate that bovine milk contains significant numbers of ncRNAs with putative regulatory targets associated with immune- and developmental-functions important for neonatal bovine health, and that processing significantly affects the ncRNA expression values; but statistical testing of overall abundance(read counts) of all miRNA samples suggests abundance values aren’t much affected. This can be attributed to the breakage of exosomal vesicles during the processing stages. It is worth noting, however, that these gene regulatory targets are putative, and further evidence could be generated through experimental validation.

Highlights

  • Non-coding RNAs have received considerable attention for their potential to modulate posttranscriptional gene expression in vitro and in vivo

  • We focus on the annotation of miRNA, linc-RNA, and Piwi-interacting RNAs (piRNAs), with a particular focus on milk miRNA

  • Our results suggest there were a greater number of upregulated miRNA in the six treated groups compared to the control (Fig. 1, Supplemental Data)

Read more

Summary

Introduction

Non-coding RNAs (ncRNAs) have received considerable attention for their potential to modulate posttranscriptional gene expression in vitro and in vivo. MicroRNAs are single-stranded ncRNA molecules of length 21–25 bases They regulate around 60% of protein-coding genes in the human genome at the translational level [2]. Piwi-interacting RNAs (piRNAs) are non-coding, single-strand RNAs ranging from about 24– 32 nucleotides in length [3]. These piRNA interact with the piwi protein subfamily of the argonaute family [4]. Piwi proteins are involved in germline development and are highly conserved across species. Another class of ncRNA are lincRNA, which are transcribed RNAs more than 200 nucleotides in length found between proteincoding genes [5]. To find the annotation of ncRNAs, we probed bovine and other organism repositories(such as miRBase, miRTarBase, Ensemble) to find homolog ncRNA annotation in case the annotations of ncRNA are not available in Bos Taurus database

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call