Abstract

Fabry disease (FD) is an X-linked lysosomal storage disease. It is caused by deficiency of the enzyme α-galactosidase A (α-Gal A), which leads to excessive deposition of neutral glycosphingolipids, especially globotriaosylceramide (GL-3), in cells throughout the body. Progressive accumulation of GL-3 causes life-threatening complications in several tissues and organs, including the vasculature, heart, and kidney. Currently available enzyme replacement therapy for FD employs recombinant α-Gal A in two formulations, namely agalsidase alfa and agalsidase beta. Here, we evaluated JR-051 as a biosimilar to agalsidase beta in a non-clinical study. JR-051 was shown to have identical primary and similar higher-order structures to agalsidase beta. Mannose-6-phosphate content was higher in JR-051 than in agalsidase beta, which probably accounts for a slightly better uptake into fibroblasts in vitro. In spite of these differences in in vitro biological features, pharmacokinetic profiles of the two compounds in mice, rats, and monkeys were similar. The ability to reduce GL-3 accumulation in the kidney, heart, skin, liver, spleen, and plasma of Gla-knockout mice, a model of FD, was not different between JR-051 and agalsidase beta. Furthermore, we identified no safety concerns regarding JR-051 in a 13-week evaluation using cynomolgus monkeys. These findings indicate that JR-051 is similar to agalsidase beta in terms of physicochemical and biological properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.