Abstract

Metal artifacts are a well-known problem in computed tomography - particularly in interventional imaging where surgical tools and hardware are often found in the field-of-view. An increasing number of interventional imaging systems are capable of non-circular orbits providing one potential avenue to avoid metal artifacts entirely by careful design of the orbital trajectory. In this work, we propose a general design methodology to find complete data solution by applying Tuy's condition for data completeness. That is, because metal implants effectively cause missing data in projections, we propose to find orbital designs that will not have missing data based on arbitrary placement of metal within the imaging field-of-view. We present the design process for these missing-data-free orbits and evaluate the orbital designs in simulation experiments. The resulting orbits are highly robust to metal objects and show greatly improved visualization of features that are ordinarily obscured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.