Abstract

Previous experiments revealed a dramatic increase in excitatory acetylcholine transmission in hypothalamic cultures during a chronic decrease in glutamate activity. Data suggested that in the absence of glutamate excitation, acetylcholine becomes the major excitatory neurotransmitter. However, non-cholinergic excitatory activity was also detected in some neurons. Here, using calcium imaging in hypothalamic cultures chronically subjected to the glutamate receptor blockade, we demonstrate the contribution of metabotropic glutamate receptors, P2-purinoreceptors, histamine receptors, adrenoreceptors, and gap junctions, but not nitric oxide to this non-cholinergic excitation. We also show that the sensitivity of neurons to receptor agonists is increased following the blockade. Data suggest that multiple components contribute to the excitatory activity in hypothalamic neurons during a long-term decrease in glutamate activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.