Abstract
Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aβ peptide that is associated with Alzheimer disease. Other proteins that are present when Aβ peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aβ aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and β-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aβ(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aβ, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aβ aggregation. We propose general mechanisms for the broad-spectrum inhibition Aβ fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.