Abstract
Activity-dependent neurotransmitter switching engages genetic programs regulating transmitter synthesis, but the mechanism by which activity is transduced is unknown. We suppressed activity in single neurons in the embryonic spinal cord to determine whether glutamate-gamma-aminobutyric acid (GABA) switching is cell autonomous. Transmitter respecification did not occur, suggesting that it is homeostatically regulated by the level of activity in surrounding neurons. Graded increase in the number of silenced neurons in cultures led to graded decrease in the number of neurons expressing GABA, supporting non-cell-autonomous transmitter switching. We found that brain-derived neurotrophic factor (BDNF) is expressed in the spinal cord during the period of transmitter respecification and that spike activity causes release of BDNF. Activation of TrkB receptors triggers a signaling cascade involving JNK-mediated activation of cJun that regulates tlx3, a glutamate/GABA selector gene, accounting for calcium-spike BDNF-dependent transmitter switching. Our findings identify a molecular mechanism for activity-dependent respecification of neurotransmitter phenotype in developing spinal neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.