Abstract
The transcription factor STAT3 promotes astrocytic differentiation of neural precursor cells (NPCs) during postnatal development of the mouse neocortex, but little has been known of the possible role of STAT3 in the embryonic neocortex. We now show that STAT3 is expressed in NPCs of the mouse embryonic neocortex and that the JAK-STAT3 signaling pathway plays an essential role in the maintenance of NPCs by fibroblast growth factor 2. Conditional deletion of the STAT3 gene in NPCs reduced their capacity to form neurospheres in vitro, as well as promoted neuronal differentiation both in vitro and in vivo. Furthermore, STAT3 was found to maintain NPCs in the undifferentiated state in a non-cell-autonomous manner. STAT3-dependent expression of the Notch ligand Delta-like1 (DLL1) appears to account for the non-cell-autonomous effect of STAT3 on NPC maintenance, as knockdown of DLL1 by RNA interference or inhibition of Notch activation with a gamma-secretase inhibitor abrogated the enhancement of neurosphere formation by STAT3. Our results reveal a previously unrecognized mechanism of interaction between the JAK-STAT3 and DLL1-Notch signaling pathways, as well as a pivotal role for this interaction in maintenance of NPCs during early neocortical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.