Abstract

AbstractNoncatalytic anhydride curing of hydrogenated bisphenol‐A glycidyl ether (YX8000) using hydrogenated trimellic anhydride (1,2,4‐cyclohexanetricarboxylic anhydride, H‐TMAn) and methylhexahydrophthalic anhydride (MeHHPA) were studied. Differential scanning calorimetry data shows no exthothermal under 190°C using MeHHPA without catalyst because of the low reactivity. On the other hand, H‐TMAn had higher reactivity and it can be cured without catalyst. The effect of anhydride concentration both on curing and on properties was studied in detail. For example, the highest Tg was found when YX8000 : H‐TMAn = 100 : 75 or YX8000 : MeHHPA = 100 : 100. The highest curing exothermal was found at similar ratio. Following, the encapsulation of light emitting diode (LED) was prepared with two anhydrides. Surface volume decrease was observed with MeHHPA by its evaporation, but H‐TMAn gave flat surface. After thermal cycle test of these LED, H‐TMAn was found to have better crack resistance than MeHHPA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 962–966, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.