Abstract

In the field of unmanned aerial vehicles (UAVs), quadrotors are receiving considerable attention because of their potential application to industries such as transportation, inspection, and search and rescue. One of the key challenges is to robustly control the position and attitude of a UAV amid the mass and inertia uncertainties, as well as the external disturbances, that exist in the real environment. To meet these demands, this paper proposes a non-cascade adaptive sliding mode control (SMC) strategy for quadrotor trajectory tracking control. To represent real flight conditions, system dynamics are developed with unknown mass and moment of inertia while external disturbances are taken into account. Numerical simulation and indoor flight experiments are performed to verify the effectiveness of the proposed adaptive SMC strategy. In the indoor experiments, to illustrate robustness several experiments are carried out to compare the proposed design with the conventional cascade structure controller: (1) inherent inertia uncertainty, (2) mass uncertainties plus (1), and (3) external disturbance plus (2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.