Abstract

Lectins are a family of glycan-binding proteins, many of which have been established as key targets for therapeutic intervention. They play a central role in many physiological and cellular processes. With the advances in protein crystallography, NMR spectroscopy and computational power over the past couple of decades, the carbohydrate-receptor interactions are now well understood and characterized. Nevertheless, designing efficient carbohydrate inhibitors is a laborious endeavour. They are known to have weak affinities, unsuitable pharmacokinetic properties and highly cumbersome/complex synthetic routes. To circumvent these issues many non-carbohydrate strategies have been reported. Galectins are a sub-family of lectin proteins which have been recognized as crucial targets for a wide variety of diseases. Many candidates targeting galectins are currently in advanced stages of clinical trials. There have been a few reports of non-carbohydrate inhibitors targeting galectins which comprise of peptide-based inhibitors and a recent flourish of heterocyclic inhibitors. In this review, we have briefly highlighted the strategies like fragment-based drug-design and high-throughput screens utilized to identify non-carbohydrate based antagonists for proteins wherein the presence of a sugar was believed to be essential. Additionally, we have described the literature pertaining to non-carbohydrate inhibitors of galectins and how previous reports on rational substitution of a sugar motif could aid in design of heterocyclics that inhibit lectins/galectins. We have concluded with remarks on challenges, gap in our understanding and future perspectives concerned with rational design of non-carbohydrate molecules targeting lectins/galectins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.