Abstract
Although the majority of members belonging to the small GTPase Ras superfamily have been studied in several malignancies, the function of RBJ has remained unclear, particularly in non-small cell lung cancer (NSCLC). The research aims to determine the function of RBJ in NSCLC. The levels of RBJ protein in tumor tissue and para-carcinoma normal tissue were ascertained via immunohistochemistry (IHC). The growth, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2-deoxyuridine (EdU) assay, colony formation, cell counting kit-8 (CCK8), transwell and wound healing assays. Furthermore, a nude mouse xenograft model was established to study the function of RBJ in tumorigenesis in vivo. The IHC analysis revealed that the protein levels of RBJ were notably increased in tumor tissue and positively associated with the clinical stage. In addition, the knockdown of RBJ restrained the growth, invasion, and migration of NSCLC cell lines by inhibiting the epithelial-mesenchymal transition (EMT) through the MEK/ERK signaling pathway. Accordingly, opposite results were observed when RBJ was overexpressed. In addition, the overexpression of RBJ accelerated tumor formation by A549 cells in nude mice. RBJ promoted cancer progression in NSCLC by activating EMT via the MEK/ERK signaling. Thus, RBJ could be used as a potential therapeutic against NSCLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.