Abstract

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants in the MECP2 gene. While the majority of RTT-causing variants are clustered in the methyl-CpG binding domain and NCoR/SMRT interaction domain, we report a female patient with a functionally uncharacterized MECP2 variant in the C-terminal domain, c.1030C>T (R344W). We functionally characterized MECP2-R344W in terms of protein stability, NCoR/SMRT complex interaction, and protein nuclear localization in vitro. MECP2-R344W cells showed an increased protein degradation rate without significant change in NCoR/SMRT complex interaction and nuclear localization pattern, suggesting that enhanced MECP2 degradation is sufficient to cause a Rett Syndrome-like phenotype. This study highlights the pathogenicity of the C-terminal domain in Rett Syndrome, and demonstrates the potential of targeting MECP2 protein stability as a therapeutic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call