Abstract
Quantum mechanical, non-relativistic, non-Born-Oppenheimer (non-BO) calculations are performed for the rovibrational spectrum of H2 excited to the second rotational level. The non-BO wave functions of the considered states are expanded in terms of all-particle explicitly correlated Gaussian functions. The dissociation energies and rovibrational transition energies are calculated and compared with experimental values and values obtained in calculations performed by others. The average interparticle distances are calculated and compared with the corresponding values for HD. They show that H2 is a more “diffuse molecule”. The nuclear-nuclear correlation functions are calculated and plotted to visualize the “non-BO molecular structure” of H2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.