Abstract

In this work, we parameterize an empirical potential for the interaction between organic molecules and metal surfaces via force matching. This is done by pursuing a self-consistent approach similar to the ones used for equilibrium simulations; however, special attention is paid to the suitability of the resulting potential for tribological (non-equilibrium) situations. Specifically, we study olefin molecules confined between two aluminum surfaces under realistic pressures and shear rates. We find that the Buckingham potential produces better agreement with the first principle data than other force fields. While our training set only contains hexene molecules, we find that the standard error in the fitted olefin-aluminum interaction increases only by a factor of 1.15 when the force field is applied to butene, octene, and decene. Including mirror charges into the treatment only marginally improves fits. While olefins on aluminum is merely a special case, the proposed methodology can be used to parameterize any other interaction between polymers and metal surfaces for use in tribological simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.