Abstract
In spatially periodic Hermitian systems, such as electronic systems in crystals, the band structure is described by the band theory in terms of the Bloch wave functions, which reproduce energy levels for large systems with open boundaries. In this paper, we establish a generalized Bloch band theory in one-dimensional spatially periodic tight-binding models. We show how to define the Brillouin zone in non-Hermitian systems. From this Brillouin zone, one can calculate continuum bands, which reproduce the band structure in an open chain. As an example, we apply our theory to the non-Hermitian Su-Schrieffer-Heeger model. We also show the bulk-edge correspondence between the winding number and existence of the topological edge states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.