Abstract

A series of experiments suggest that, compared to the Bayesian benchmark, people may either underreact or overreact to new information. We consider a setting where agents repeatedly process new data. Our main result shows a basic distinction between the long-run beliefs of agents who underreact to information and agents who overreact to information. Like Bayesian learners, non-Bayesian updaters who underreact to observations eventually forecast accurately. Hence, underreaction may be a transient phenomenon. Non-Bayesian updaters who overreact to observations eventually forecast accurately with positive probability but may also, with positive probability, converge to incorrect forecasts. Hence, overreaction may have long-run consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.