Abstract
The detection of an anomaly from a few noisy tomographic projections is addressed from the statistical point of view. An unknown scene is composed of a background, considered as a deterministic nuisance parameter, with a possibly hidden anomaly. Because the full pixel-by-pixel reconstruction is impossible, a parametric non-Bayesian approach is proposed to fill up the gap in the missing data. An optimal statistical test which eliminates the background and detects the anomaly is designed. The potential advantage of such an approach is its capacity to detect an anomaly/target hidden in background designed by an adversary to mask the anomaly. A key issue in the non-Bayesian anomaly detection, i.e., the problem of anomaly detectability, is stated and solved in this paper. In the case of a bivariate polynomial background defined on an unknown rectangular support, the size of detectable anomaly reaches its maximum defined by the number of elementary cells of X-ray detector and degree of the polynomial function
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.