Abstract

The personalized bundle generation problem, which aims to create a preferred bundle for user from numerous candidate items, receives increasing attention in recommendation. However, existing works ignore the order-invariant nature of the bundle and adopt sequential modeling methods as the solution, which might introduce inductive bias and cause a large latency in prediction. To address this problem, we propose to perform the bundle generation via non-autoregressive mechanism and design a novel encoder–decoder framework named BundleNAT, which can effectively output the targeted bundle in one-shot without relying on any inherent order. In detail, instead of learning sequential dependency, we propose to adopt pre-training techniques and graph neural network to fully embed user-based preference and item-based compatibility information, and use a self-attention based encoder to further extract global dependency pattern. We then design a permutation-equivariant decoding architecture that is able to directly output the desired bundle in a one-shot manner. Experiments on three real-world datasets from Youshu and Netease show the proposed BundleNAT significantly outperforms the current state-of-the-art methods in average by up to 35.92%, 10.97% and 23.67% absolute improvements in Precision, Precision+, and Recall, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.