Abstract

We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.