Abstract

The augmented inverse probability weighting is well known for its double robustness in missing data and causal inference. If either the propensity score model or the outcome regression model is correctly specified, the estimator is guaranteed to be consistent. Another important property of the augmented inverse probability weighting is that it can achieve first-order equivalence to the oracle estimator in which all nuisance parameters are known, even if the fitted models do not converge at the parametric root-n rate. We explore the non-asymptotic properties of the augmented inverse probability weighting estimator to infer the population mean with missingness at random. We also consider inferences of the mean outcomes on the observed group and on the unobserved group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.