Abstract

TiO2 hollow spheres are fabricated by a facile and template-free approach, which is efficient, cost-saving and favorable for large scale production. The as-prepared TiO2 hollow spheres with diameters ranging from 1 to 1.5 μm and a shell thickness of 150 nm are formed by the self-assembly of nanoparticles with a size of about 12 nm. The mesoporous TiO2 hollow spheres possess a high specific surface area up to 166.2 m2 g−1. TiO2 hollow spheres show superior light trapping characteristics and significantly improve the light scattering ability. The formation of hollow structure is interpreted by the Ostwald ripening mechanism. By employing a double-layered photoanode made of the as-prepared TiO2 hollow spheres as the overlayer and P25 as the bottom layer, the dye-sensitized solar cell achieved a power conversion efficiency of 7.90%, which is ascribed to the enhanced dye loading and light scattering ability of TiO2 hollow spheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call