Abstract
Advantages and disadvantages of the non-approximated numerical implementation of the Rayleigh-Sommerfeld diffraction integral (RSD) are revisited. In this work, it is shown that as trade-off for its large computation load, the non-approximated RSD removes any limitation on the propagation range and does not introduce any artifact in the computed wave field. A non-approximated GPU implementation of the RSD is contrasted with the angular spectrum, the Fresnel transform, and a fast Fourier transform implementation of the RSD. The forecasted phase shift introduced in the propagated wave fields as light is diffracted on complementary apertures and utilized as a metric to quantify the performance of the tested methods. An application to numerical reconstructions with arbitrary shape and size of digital recorded holograms from digital lensless holographic microscopy is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.