Abstract

The 14-membered macrolide erythromycin A expresses three distinct biological properties, including antibacterial activity, gastrointestinal motor-stimulating activity and anti-inflammatory and/or immunomodulatory effects. Although low-dose, long-term therapy using 14- and 15-membered macrolides displaying anti-inflammatory and/or immunomodulatory activity effectively treats diffuse panbronchiolitis and chronic sinusitis, bacterial resistance may emerge. To address this issue, we developed the 12-membered non-antibiotic macrolide (8R,9S)-8,9-dihydro-6,9-epoxy-8,9-anhydropseudoerythromycin A (EM900) that promotes monocyte to macrophage differentiation, a marker for anti-inflammatory and/or immunomodulatory effects, without possessing antibacterial activity. In this article, we report that the new macrolide derivative (8R,9S) -de(3'-N-methyl)-3'-N-(p-chlorobenzyl)-de(3-O-cladinosyl)-3-dehydro-8,9-dihydro-6,9-epoxy-8,9-anhydropseudoerythromycin A 12,13-carbonate (EM939) exhibited stronger promotive activity for monocyte to macrophage differentiation than that of the parent compound EM900 in addition to reduced cytotoxicity toward THP-1 cells and antibacterial inactivity. In a cigarette-smoking model used to simulate chronic obstructive pulmonary disease (COPD), the EM900 derivatives significantly attenuated lung and alveolar inflations, functionally and histologically, via oral administration. Because of these marked therapeutic effects, non-antibiotic EM900 derivatives may become central to the treatment of chronic inflammatory diseases such as COPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call