Abstract

Individuals with obesity or type 2 diabetes (T2D) have an increased risk of developing non-alcoholic fatty liver disease (NAFLD). In insulin-resistant states, altered adipose tissue function may be the initial abnormality underlying NAFLD. Hepatic lipid oversupply interferes with insulin signalling and mitochondrial function. In obese individuals, adaptation of hepatic mitochondrial respiration fails with the progression of NAFLD and can activate pro-inflammatory pathways. T2D as well as type 1 diabetes are associated with altered hepatic mitochondrial function. Screening for NAFLD remains challenging especially in those with diabetes because liver enzymes are often in the normal range and the performance of NAFLD scores is limited. Patients with T2D and severe insulin-resistant diabetes (SIRD) have the highest prevalence of NAFLD at diagnosis and the greatest risk of progression. In this subgroup, the single-nucleotide-polymorphism (SNP) rs738409(G) of the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene is associated with high liver fat content and adipose tissue insulin resistance. This frequent SNP is also known to be associated with lean NAFLD so that genetic testing for this and other SNPs could improve future screening strategies to identify high-risk individuals. Although lifestyle modifications are effective, this approach is limited owing to difficulties with compliance and several classes of drugs are being tested to treat NAFLD. Antihyperglycaemic drugs such as glucagon-like peptide 1 receptor agonists (GLP-1 RA), sodium-glucose cotransporter 2 inhibitors (SGLT2i) and pioglitazone are promising and halt the progression of NAFLD. In conclusion, although NAFLD in diabetes may not be a separate entity, there are specific features to its pathogenesis and clinical management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call