Abstract

A unified picture of the photodissociation of theC2H radical has been developed using the results from the latest experimental and theoretical work. This picture shows that a variety of electronic states ofC2 are formed during the photodissociation of theC2H radical even if photoexcitation accesses only one excited state. This is because the excited states have many avoided corssings and near intersections where two electronic states come very close to one another. At these avoided crossings and near intersections, the excited radical can hop from one electronic state to another and access new final electronic states of theC2 radical. The complexity of the excited state surfaces also explains the bimodal rotational distributions that are observed in all of the electronic states studied. The excited states that dissociate through a direct path are limited by dynamics to produceC2 fragments with a modest amount of rotational energy, whereas those that dissociate by a more complex path have a greater chance to access all of phase space and produce fragments with higher rotational excitation. Finally, the theoretical transition moments and potential energy curves have been used to provide a better estimate of the photochemical lifetimes in comets of the different excited states of theC2H radical. The photochemically active states are the 22∑+, 22II, 32II, and 32∑+, with photodissociation rate constants of 1.0×10−6, 4.0×10−6, 0.7×10−6, and 1.3×10−6s−1, respectively. These rate constants lead to a total photochemical lifetime of 1.4×105 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.