Abstract

ABSTRACTThe dynamics of the ring opening in the state of cyclohexa-1,3-diene (CHD) is studied by a new direct mixed quantum-classical non-adiabatic dynamics approach which employs the decoherence-induced surface hopping based on the exact factorisation (DISH-XF) molecular dynamics method in connection with the state-interaction state-averaged spin-restricted ensemble-referenced Kohn–Sham (SI-SA-REKS, or SSR) electronic structure method. The critical species on the and PESs of CHD were studied using the SSR method and the minimum energy pathways (MEPs) were optimised. The obtained vertical excitation energies are in good agreement (within ca. 5–6 kcal/mol) with the experimental values. The optimised geometry of the / minimum energy conical intersection (MECI) agrees well with the previously obtained MSPT2 geometry. The DISH-XF/SSR non-adiabatic molecular dynamics (NAMD) simulations of ring opening in CHD predict the exponential decay constant fs in a reasonable agreement with an experimental estimate (230±30 fs). The calculated product branching ratio (CHD:HT = 64:36) is in agreement with the recent experimental measurement (70:30). The NAMD trajectories are analysed in terms of the vibrational normal modes and the obtained branching ratio is explained by persistent stretching of the fissile bond when the trajectories propagate on the PES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.