Abstract

Over the years, theoretical calculations and scalable computer simulations have complemented ultrafast experiments, as they offer the advantage of overcoming experimental restrictions and having access to the whole dynamics. This synergy between theory and experiment promises to yield a deeper understanding of photochemical processes, offering valuable insights into the behavior of complex systems at the molecular level. However, the ability of theoretical models to predict ultrafast experimental outcomes has remained largely unexplored. In this work, we aim to predict the electron diffraction signals of an upcoming ultrafast photochemical experiment using high-level electronic structure calculations and non-adiabatic dynamics simulations. In particular, we perform trajectory surface hopping with extended multi-state complete active space with second order perturbation simulations for understanding the photodissociation of cyclobutanone (CB) upon excitation at 200nm. Spin-orbit couplings are considered for investigating the role of triplet states. Our simulations capture the bond cleavage after ultrafast relaxation from the 3s Rydberg state, leading to the formation of the previously observed primary photoproducts: CO + cyclopropane/propene (C3 products), ketene, and ethene (C2 products). The ratio of the C3:C2 products is found to be about 1:1. Within 700fs, the majority of trajectories transition to their electronic ground state, with a small fraction conserving the initial cyclobutanone ring structure. We found a minimal influence of triplet states during the early stages of the dynamics, with their significance increasing at later times. We simulate MeV-ultrafast electron diffraction (UED) patterns from our trajectory results, linking the observed features with specific photoproducts and the underlying structural dynamics. Our analysis reveals highly intense features in the UED signals corresponding to the photochemical processes of CB. These features offer valuable insights into the experimental monitoring of ring opening dynamics and the formation of C3 and C2 photoproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call