Abstract
Several generations of poly(β-amino ester) (PBAE) polymers have been developed for efficient cellular transfection. However, PBAE-based gene vectors, similar to other cationic materials, cannot readily provide widespread gene transfer in the brain due to adhesive interactions with the extracellular matrix (ECM). We thus engineered eight vector candidates using previously identified lead PBAE polymer variants but endowed them with non-adhesive surface coatings to facilitate their spread through brain ECM. Specifically, we screened for the ability to provide widespread gene transfer in tumor spheroids and healthy mouse brains. We then confirmed that a lead formulation provided widespread transgene expression in orthotopically established brain tumor models with an excellent in vivo safety profile. Lastly, we developed a method to store it long-term while fully retaining its brain-penetrating property. This new platform provides a broad utility in evaluating novel genetic targets for gene therapy of brain tumors and neurological disorders in preclinical and clinical settings. Graphical abstract We engineered biodegradable DNA-loaded brain-penetrating nanoparticles (DNA-BPN) possessing small particle diameters (< 70nm) and non-adhesive surface coatings to facilitate their spread through brain tumor extracellular matrix (ECM). These DNA-BPN provide widespread gene transfer in models recapitulating the ECM barrier, including three-dimensional multicellular tumor spheroids and mice with orthotopically established brain tumor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.