Abstract

The Percus-Yevick approximation is solved numerically for a binary mixture of hardspheres with negative non-additive diameter. Results for the partial distribution functions, the partial structure factors and a few thermodynamic properties are presented. We discuss the possible usefulness of this model as a reference system for binary liquid alloys with short range order. 1. I*+u~t_izn_ In their pioneer work on liquid Cu-Sn alloy, Enderby et a1 ( 11 pointed out that, whereas the first peaks of the Cu-CU and Sn-Sn partial structure factors corresponded closely to the pure component behaviour, the position of the first peak of the Cu-Sn partial structure factor did not fall midway between the other two. The authors stated at the time that it remains to be seen whether this departure from complete random mixing is consistent with the short-range order postulated to explain the thermodynamic properties of this alloy system. The simplest system which could exhibit this type of behaviour consists of a binary mixture of hard-spheres such that the effective diameter between spheres of unlike species is given by R12 = &(R~ + R~) + a (1 where R. is the diameter of species i and a the non-additive parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.