Abstract

To elucidate how non-active site residues support the catalytic function, five selected residues of AdGSTD3-3 isoenzyme were changed to AdGSTD1-1 residues by means of site-directed mutagenesis. Analysis of the kinetic parameters indicated that Cys69Gln and Asp150Ser showed marked differences in V max and K m compared with the wild type enzyme. Both residues were characterized further by replacement with several amino acids. Both the Cys69 and Asp150 mutants showed differences with several GST substrates and inhibitors including affecting the interactions with pyrethroid insecticides. Cys69 and Asp150 mutants possessed a decreased half-life relative to the wild type enzyme. The Asp150 mutation appears to affect neighboring residues that support two important structural motifs, the N-capping box and the hydrophobic staple motif. The Cys69 mutants appeared to have subtle conformational changes near the active site residues resulting in different conformations and also directly affecting the active site region. The results show the importance of the cumulative effects of residues remote from the active site and demonstrate that minute changes in tertiary structure play a role in modulating enzyme activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.