Abstract
W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.